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Figure 1: Two scenarios in which virtual views are overlaid on the physical environment: (left) Situated Analytics – data visualisa-
tions are displayed close to their spatial referents and (right) Small-multiples Visualisation with display layout decoupled from the
environment – displaying views in an arbitrarily large display space around the user. The spatial relationships between physical
landmarks and virtual targets may influence spatial memory when recalling the locations of these virtual targets.

ABSTRACT

Augmented Reality (AR) is touted to be beneficial in supporting
situated information display, allowing virtual information panels to
be overlaid on real-world scenes. People must then use their spatial
memory to navigate among these virtual panels effectively. While
spatial memory has been studied in physical environments (wall
displays) and virtual reality environments, there has been little re-
search on how physical surroundings might affect memorisation of
virtual content in a mixed environment like AR. Therefore, we pro-
vide the first AR study of spatial memory, comparing two different
room settings with two different situated layouts of virtual targets
on an abstract spatial memory task. We find that participants recall
spatial patterns with greater accuracy and higher subjective ratings
in a room with furniture compared to an empty room. Our findings
lead to important design implications for mixed-reality user inter-
faces, particularly in information-rich applications like situated an-
alytics and small-multiples information visualisation.

Index Terms: spatial memory, immersive analytics, view man-
agement, physical landmark, augmented reality, mixed reality

1 INTRODUCTION

Augmented Reality (AR) can enrich our physical workspaces (such
as manufacturing workshops [24, 65, 72], warehouses [28, 49, 59],
wet labs [25, 26, 30], and medical facilities [7, 20, 50]) with arbi-
trarily large workspaces for overlaying virtual imagery. Recent ad-
vances such as low-latency, wide-FoV, pass-through headsets, may
help lead to increasing adoption of AR across a number of domains.
The ability to bring information “out of the display” and integrate
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it into the world around us allows digital information to be viewed
within the context of objects in the surrounding environment. How-
ever, realising these advantages will require interface designers to
rethink how to harness spatial skills for exploring information.

Large virtual workspaces have long been touted as beneficial in
supporting “space to think” [36], Small Multiples Comparison [39],
and collaborative visualisation [9]. However, the efficiency of such
applications is dependent on the user’s ability to remember the lo-
cations of multiple views. Studies have shown that the spatial lay-
out of virtual views can impact recall. For instance, earlier work
has shown that the spatial layout of virtual panels on wall displays
can benefit more from a spatial memory effect compared to virtual
navigation through a small viewport [58]. Meanwhile, in Virtual
Reality (VR), it has been shown that a wrap-around layout nega-
tively affects the ability to recall view positions compared to a flat
layout or semicircular layout [40].

In AR applications, the preferred layout of information views
may be influenced by the surrounding environment. Primarily,
physical features of the built environment and objects within it
provide readily available landmarks that can be used to reinforce
memory of spatial relationships. Visual landmarks have been
shown to improve recall performance in desktop UIs as well as in
VR [15, 17, 62]. Using a room-sized workspace with a sensemak-
ing task in AR, Luo et al. [43] found that people tend to anchor
clusters of virtual views near landmarks such as office furniture.
Yet, it remains to be observed whether such spatial anchoring af-
fects recall ability in AR workspaces.

With this paper we aim to contribute to a better understanding
of the impacts of the presence of objects in the environment and
the relative placement of virtual views to spatial memory. We de-
scribe a user study (in Section 3) that compares recall performance
in an office-like environment filled with furniture (providing im-
plicit landmarks) versus a similar empty environment. To deter-
mine how the allocentric spatial relationships between views and
landmarks impacts performance, our study includes a second fac-
tor that compares furniture-aligned views with a regular, grid-like
layout (see Figure 1).
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Our results (detailed in Section 3.6) show that participants were
able to recall the positions of virtual views more accurately when
physical landmarks were present. Subjective feedback indicates
more positive ratings, better performance, less mental and physical
effort, and less frustration with the room with physical landmarks
than the empty room. While the layout factor did not impact per-
formance, participants preferred a grid layout when furniture was
not present. Overall, these findings suggest that anchoring virtual
information views near physical landmarks, even without semantic
relationships between the views and landmarks, improves people’s
ability to accurately recall the spatial positions of the views.

In summary, we present a contribution to the first rigorous study
testing the effects of physical landmarks on spatial memory in an
AR environment. From the discussion of our findings in Section 4,
we infer a set of design guidelines for the layout of information
views relative to the environment that supports spatial memory and
navigation in situated and immersive visualisation scenarios.

2 RELATED WORK

We review previous work on situated information displays using
AR, focusing on the placement of virtual information panels. Next,
we provide a brief introduction to spatial memory from the fields of
both Psychology and Human-computer Interaction (HCI). Last, we
discuss the effects of landmarks on spatial memory in 3D space.

2.1 Situated Information Displays
In an early investigation and prototyping of electronic field guide
interfaces for biodiversity research, White et al. [66] proposed over-
laying virtual botanical species identification results on a hand-held
voucher via a video see-through display. They argued that the ar-
rangement of the physical sample juxtaposed with virtual informa-
tion affords better comparison. Recent research then has been ex-
ploring how situated information displays benefit immersive data
visualisations and analytics. ElSayed et al. [11] introduced Situated
Analytics, a technique that focuses on interactive visual analytics of
data in its contextual environment. Their evaluation of shopping
tasks suggested that situated analytics lead to better performance
and higher user preference than traditional methods.

In the last decade, the HCI field has seen numerous situated
AR applications and studies emerge [8, 13, 56]. For example, in
the context of building maintenance, Prouzeau et al. [51] proposed
“Corsican Twin”, a user-centred design of AR situated visualisa-
tions using a novel authoring technique in VR to simulate opera-
tions and diagnose on-site equipment effectively. Ens et al. [12]
presented a tabletop AR system that situates charts on tangible scale
models. Such a prototype system is reported to be beneficial to col-
laborative knowledge-sharing and decision-making. Luo et al. [44]
developed a situated visualisation system for human movement data
analysis, enlightening future situated analytics workflows.

More recent work has established design spaces of situated in-
formation displays. Lee et al. [34] introduced design patterns de-
rived from a systematic literature review of situated visualisation,
while Satriadi et al. [54] proposed an extended model of situated
visualisation that included local or hand-held miniature proxies of
real-world referents. Researchers have also introduced design space
exploration of how to place situated virtual views with the physi-
cal referents and techniques for layout management and optimisa-
tion [19, 18, 38]. For example, Satriadi et al. [55] presented six ar-
rangement methods for virtual complex data representations around
physical referents. Niyazov et al. [47] proposed user-driven con-
straints for augmented reality layout optimisation, allowing users
to define and set up their own rules to place virtual information
panels within the physical surrounding environments.

Recently, Luo et al. [43] studied how users prefer to place vir-
tual views in fully-furnished AR workspaces during collaborative
tasks. They observed participants tend to align virtual views near

furniture. Yet, the benefits of such a strategy from the perspective
of cognitive processes such as spatial memory remain unexplored.
Thus, in this paper, we investigate the cognitive (i.e., spatial mem-
ory) effects of virtual views situated to physical objects (e.g., furni-
ture) to support designing effective situated information displays.

2.2 Spatial Memory
Spatial memory allows people to collect and store information
about their surrounding environment and facilitates navigation [46].
It plays a part in both short-term memory (i.e., working memory)
and long-term memory (i.e., semantic and episodic memory) [3].
We focus on spatial memory representation in working memory,
storing and processing information about the current environment.

Sholl’s model for spatial memory [10, 57] explains the learning
and retrieval of two spatial relations: egocentric spatial relations be-
tween the user and objects and allocentric spatial relations among
the objects. Egocentric relations define a self-reference system,
where self-to-object spatial relations are perceived in body-centred
coordinates via the body axes. Allocentric relations describe an
object-to-object system, encoding the spatial relations among ob-
jects in environmental coordinates, which can be formalised as a
network of nodes interconnected by vectors. Recent work explored
and evaluated Sholl’s model and built several frameworks based on
the model [6, 46, 64]. Moreover, when people learn a new envi-
ronment, they interpret the spatial structure of the environment in
terms of a spatial reference system [45], which influences spatial
memory [61]. The Infocockpit system proposed by Tan et al. [60]
provided large screens surrounding the user and ambient visual and
auditory displays. The setup was found to improve spatial mem-
ory compared to desktop displays. These findings are essential to
understanding how people perceive the surrounding environment
regarding spatial memory from an egocentric perspective.

Researchers in HCI have since explored how spatial memory can
improve user interface and task efficiency, especially in immersive
environments such as VR [15, 31, 71]. Liu et al. [39] proposed
a shelf metaphor to enhance spatial memory for small multiples
visualisation in a VR environment. Han and Cho [21] tested flat,
semi-circular, and full-circular user interaction techniques on spa-
tial memory in VR and AR environments. They find that walk-
ing and grabbing support spatial memory. Liu et al. [40] evaluated
the effects of flat, semi-circular, and full-circular display layouts on
spatial memory in a VR environment. They found that flat layouts
afford greater recall accuracy and more positive subjective ratings
than full-circular layouts. They explained that the result may be
impacted by different head rotations involved in different layouts.

In our study, we build upon Sholl’s model to understand the ef-
fects of spatially directed motor activities, such as walking, hand
reaching, and body/head rotation, on spatial memory in the self-
reference system, as well as how spatial relations between physical
landmarks and virtual targets are perceived in the object-to-object
spatial reference system. While such effects have been explored in
various VR studies listed above, it still remains unknown whether
the implications of these studies still apply to a mixed environment
such as AR. Thus, we investigate whether and how physical objects
may influence spatial memory in AR.

2.3 Effects of Landmarks on Spatial Memory
To understand how landmarks influence spatial memory in 3D
spaces, researchers have explored and evaluated various designs of
artificial landmarks in virtual environments. In early work, Vin-
son [63] proposed a design guideline focused on using landmarks in
human navigation in a virtual environment. They explain that land-
marks indicate position and orientation and contribute to the de-
velopment of spatial knowledge. Moreover, Bosco et al. [5] found
an orientation specificity effect due to different spatial relations be-
tween target and landmarks. Uddin et al. [62] tested various arti-
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ficial landmarks on spatial learning in a desktop environment and
proposed that simple visual anchors have the potential to improve
performance and spatial memory. Gao et al. [16, 17] further demon-
strated that such landmarks assist multiple target learning and re-
trieval in VR. However, we cannot predict how these findings con-
cerning landmarks in VR carry-over to the mixture of physical ref-
erent and overlaid information in AR scenarios. Therefore, we ask
the same question of whether and how physical objects as environ-
mental landmarks may influence the memorisation of locations of
virtual information panels in AR.

3 USER STUDY

In this section, we introduce our user study to investigate whether
and how physical objects as landmarks influence the memorisation
of locations of virtual information panels in AR. We first explain
our design and hypotheses, followed by study tasks and procedures.
Finally, we describe the outcome measurements for our study.

3.1 Design and Hypotheses
Mixed-reality scenarios overlaying virtual views on the physical en-
vironment involve three sets of objects that may influence spatial
memory: the shape and extent of the physical workspace or envi-
ronment; physical landmarks within the space; and virtual informa-
tion views rendered by the AR system.

Physical Workspace—The size (or scale) and layout of the
workspace are crucial considerations for spatial memory. We centre
our research on office or workshop rooms designed with a standard
rectangular layout. This choice is informed by insights gleaned
from prior investigations [43, 40], which highlight the importance
of facilitating efficient movement within such spaces [29]. By
adopting this familiar structure, we ensure that our contributions
seamlessly integrate with the existing body of literature.

Physical Landmarks—In the context of our study, landmarks are
physical objects in the workspace. An office can contain multiple
pieces of FURNITURE or electronic devices. To serve its purpose as
a landmark, the object must have unique features. These features
can be associated with the size relative to the surrounding objects,
the complexity of the geometry, or perhaps unique experiences that
one has with the objects.

Information Views—Situated information displays render charts,
text, or application windows as virtual information panels. The
quantity and dimensions of these views are adaptable, contingent
upon the intricacy of the scenario under examination. Our primary
emphasis lies in scenarios where users are required to interact with
multiple views of a scale akin to standard application windows.

Thus, we design our study using a 2 × 2 (i.e. FURNITURE ×
LAYOUT) within-subjects design with four conditions as follows:

FURNITURE

Furniture NoFurniture

L
A

Y
O

U
T

Regular

Irregular

FURNITURE—True to our focus on office and workplace scenar-
ios, we use common environmental landmarks for that setting, such
as furniture and large electronic devices. The two levels are Fur-
niture and NoFurniture. In the Furniture condition, eight unique

items (see Section 3.3 for more details) are placed in fixed posi-
tions along the four sides of the room as environmental landmarks.
Considering the size of the room (4 m × 4 m) and the size of the
selected items, we evenly place two items along each side of the
room. In the NoFurniture condition, landmark items are removed.

LAYOUT—We are also interested in exploring the effect of the
spatial relationship between environmental landmarks and virtual
views on spatial memory. We consider two configurations: Regu-
lar—virtual views are arranged in a grid unaligned to landmarks;
and Irregular—virtual views are closely aligned with environmen-
tal landmarks. In the Regular LAYOUT condition, virtual views are
displayed in a grid layout with fixed horizontal and vertical separa-
tion. In the Irregular LAYOUT condition, virtual views are placed
close to furniture items.

These two factors result in four valid combinations: Furniture-
Regular, Furniture-Irregular, NoFurniture-Regular, and
NoFurniture-Irregular. Each participant experiences all four
combinations, but the sequence is counterbalanced between each
participant using a Latin square design.

Based on a pilot study (four participants), the results reported by
related work, and our design rationale mentioned above, we prereg-
istered [41] three hypotheses (italics):

H1 If environmental landmarks affect users’ spatial memory, par-
ticipants will recall virtual patterns with environmental land-
marks more accurately than without environmental land-
marks. We based this assumption on the preference for align-
ing virtual views with furniture observed in a study by Luo et
al. [43], as well as in related works [15, 17] that landmarks
support spatial memory.

H2 If the alignment of environmental landmarks with the virtual
views affects users’ spatial memory, environmental landmarks
closely aligned with views are more beneficial to users’ spa-
tial memory than weakly aligned landmarks. We made this as-
sumption according to the observed behaviours in the study by
Luo et al. [43]. Thus, we may expect participants to rely more
on the furniture as landmarks in the Irregular layout than the
Regular grid layout.

H3 Participants will answer the most quickly and feel the least
mentally demanding in the condition that views are closely
aligned with environmental landmarks among all conditions.

3.2 Tasks
While past work in HCI exploring spatial memory adapts existing
psychological models such as Data Mountain [29, 52] and Memory
Palace [31, 69], the task stimuli vary among static figures [31], text
or command [48], simple icons [15], and 2D map [27]. To avoid po-
tential confounds introduced by the complex nature of such tasks,
we follow Liu et al. [40] in adapting an abstract task developed
by psychologists to assess visuo-spatial memory, namely the visual
memory span task [42, 68]. In the visual memory span task, par-
ticipants were presented with a grid pattern of squares (half filled
with black and half with white) for a short duration. Such black-
and-white patterns have no contextual and semantic relations with
other objects in the same environments, ensuring participants focus
on the spatial skills to memorise locations.

We use a total of 36 virtual target views arranged into twelve
columns and three rows. The twelve columns are distributed evenly
on four sides of the room, with three columns and three rows (nine)
on each side of the room. To mitigate potential fatigue, we limit
the study to a one-hour duration with a single task difficulty. Thus,
in each task, participants must learn and recall the locations of five
targets, following the same difficulty as the study design by Liu et
al. [40]. The level of difficulty was also tested in our pilots (using
4–6 targets) and power analysis.
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Figure 2: (a) A top-down view of the study room with furniture and electronic devices arranged around the edges. Examples of first-person view
of study procedures under Furniture-Regular : (b) the learning phase; (c) the distraction phase; and (d) the recall phase. Examples of study
room configurations under different conditions: (e) Furniture-Irregular ; (f) NoFurniture-Regular ; and (g) NoFurniture-Irregular. (h) Participants
are asked to physically touch the virtual panels during the learning phase.

Each target is 0.3×0.3 m, with a vertical offset of 0.1 m between
each pair (see Figure 2-b). On each side, the targets are displayed
in a flat layout with a 1.5 m distance to the room centre. In the
Furniture condition, the furniture or electronic devices are arranged
slightly behind the cards to ensure that participants can reach them
(e.g., a touch hand gesture to select a card as in Figure 2-h).

In the Regular condition, targets are displayed in a (3× 3) grid
layout on each side of the room with a horizontal offset of 0.5 m be-
tween each column and a height of 1.15 m for the lowest target (see
Figure 2-b and f), while in the Irregular condition, each column is
displayed closely aligned with the furniture or electronic devices,
with a different column height either close to the top of the furni-
ture (e.g., tabletop device or desk) or similar to the vertical centre
of the furniture (e.g., tripod or whiteboard) (see Figure 2-e).

To reduce variability in the study data, we follow the same
pattern generation method as the study by Liu et al. [40] via a
constrained-random manner and validate the generations manually.
The three constraints for the generations are: (1) no two adjacent
targets can be included in the same pattern; (2) at least one target
is included on each row to balance the pattern vertically; and (3)
at least two targets are included on each side (left or right) to bal-
ance the pattern horizontally. The patterns used in our study can be
found in the supplementary material.

Each trial is divided into five phases: preparation, learning, dis-
traction, recall, and rest. In the preparation phase, participants are
asked to stand at the starting position facing forward, as indicated
by the footprint marks on the floor. Once in position, participants
trigger the learning phase by pressing a virtual Start button. In the
learning phase, a pattern of five white targets is revealed around
the participants (Figure 2-b). Participants are given 15 seconds to
tap each white target with either hand, causing the target bound-
ary colour to change—the headset hand tracking must register five
successful taps within the 15 seconds for the training to be valid.

Because short-term memory decays within 15–30 seconds [2],
we include a distraction phase lasting at least 15 seconds between
the learning and recall phases. In this phase, a distraction task re-
quires participants to tap a new set of randomly numbered cards in
a given sequence (Figure 2-c). Participants will see a countdown
timer on top of the task board. During the distraction task, if partic-
ipants have tapped the wrong cards or idled for five seconds, they
will be penalised by adding five seconds to their current timer, with
an upper of additional 15 seconds. Once the timer reaches 0, par-
ticipants are automatically navigated to the recall phase.

In the recall phase, participants are asked to recreate the pattern
shown in the learning phase by tapping on an empty layout. We do
not set a time limit for this phase (Figure 2-d). Participants need to
confirm their answers by tapping a button on the hand menu, which
guides them to the rest phase.

In the rest phase, participants are asked to return to the starting
position and get ready for the next trial. In this experiment, we do
not show the results to participants because the results may stimu-
late participants negatively to develop different strategies for each
trial. These phases are adapted from the work by Liu et al. [40].

The main interactions in this study are performed via mid-air
gestures. We designed a hand menu 10.4×8.8 cm in size (see Fig-
ure 2-c and d) that can be toggled by showing or hiding the palm
of either hand. We designed several buttons on the menu during the
training and experiment. Participants can directly use one hand to
touch the button on the menu while the other hand holds the menu.
Participants can also touch the virtual targets directly.

3.3 Participants and Apparatus
We recruited 16 participants (eight female and eight male) aged
between 21 and 39, all students or staff from our university. Of
the participants, we measured the VR experience via a Likert scale
ranging from 1 to 5. Five had little or no experience (self-rating
1–2), ten had at least some experience with VR (2 < self-rating
< 5), and one rated themselves as a VR expert (self-rating = 5).
Participants signed up voluntarily and were rewarded a gift card
($20 AUD) as a sign of appreciation.

During the study, our participants wore a HoloLens 21 Aug-
mented Reality (AR) headset. We developed a HoloLens Applica-
tion using the Unity development environment (2020.3.43f1). We
leveraged MRTK2 for interactive components. The prototype ran
directly on the HoloLens 2 device. The source code is publicly
available and may be downloaded via GitHub: [37].

The experiment took place inside two physical rooms 4 m ×
4 m in size. Participants needed to walk to navigate and were able
to reach any point within the rooms. One of the rooms had eight
unique pieces of furniture (including inactive electronic devices): a
whiteboard (1.8 m height), a tall tripod supporting a motion camera
(2.2 m height), a desk (0.8 m height) with an office chair under it
and a monitor on top of it, a round table (1 m height), a movable

1Microsoft HoloLens 2: https://www.microsoft.com/en-us/hololens
2MRTK: https://www.mixedrealitytoolkit.org/
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chair (0.5 m height), a tabletop device (1 m height), a tripod with a
professional camera on top (1.5 m height), and a black Surface Hub
(1.5 m height) (see Figure 2-a). The other room was empty, with all
furniture and electronic devices removed. Both rooms had curtains
from the roof to the ground to visually isolate them. The curtains
were green to provide a strong contrast between the furniture, the
AR visuals, and the background. For each room, there was a printed
pair of footprints (A4 size) in the centre of the floor, indicating the
participant’s starting position and orientation. There were also four
printed QR codes (A3 size) on the floor in each room to calibrate
the AR headset to prevent location drifting.

3.4 Procedure
After completing a consent form and demographic questionnaire,
participants were given a verbal explanation of the experimental
setup and the trial workflow. Next, participants put on the Aug-
mented Reality (AR) headset and performed a series of training
scenes to gain familiarity with the study environment (i.e., walking
around the study room), interactions with the stimuli (i.e., mid-air
gestures), and the trial workflow (i.e., all phases with trial targets).

After the general training, participants completed four blocks
of trials via the Latin square design, with each block containing
six trials for one condition. In each block, participants first com-
pleted one practice trial, followed by five experimental trials. Then,
participants were asked to remove the AR headset to take a short
break between blocks. During the break, participants were asked
to complete a short questionnaire with six questions adapted from
the NASA-TLX [22] on a 7-point Likert scale. Following the com-
pletion of all 24 trials, participants completed a questionnaire with
(1) the general strategy they used to complete the tasks, (2) whether
and how the furniture helped them to memorise the patterns, and (3)
ratings for the effect of four conditions on spatial memory. The total
study duration was about 60 minutes, including roughly 30 minutes
in AR. All participants completed the full set of trials successfully.

The experiment environment included green surrounding cur-
tains, a marble floor, four A3 size calibration QR codes, a start-
ing position sign, furniture described in Section 3.3 (only for the
furniture conditions), and the experimental grid. The starting po-
sition, QR codes, furniture (only for the furniture conditions), and
surrounding curtains were always visible during the experiment.

The vertical position of the grid was adjusted using a standard
calibration for every participant at the start of the experiment. It was
used to normalise the individual height differences and ensure that
every participant had the same ability with the controls for selec-
tion. These configurations were adapted from Liu’s work [39, 40]
and validated through our pilot testing of different variations.

3.5 Measures
For each trial, we recorded the number of correctly chosen targets,
along with their positions in the grid. We also recorded the time
taken to select the five targets in the recall phase, i.e. Recall Time.
The Recall Time was calculated from the start of each recall phase
immediately after the timer of the distractor task ends to the time the
participant pressed the button on the controller to indicate task com-
pletion. In our analysis, we used two methods to measure partici-
pants’ recall accuracy: Targets Incorrect and Euclidean Distance
Error. Targets Incorrect measures the number of targets selected
incorrectly in each trial (also expressed as an open unit interval). To
reveal deeper granularity in the responses, we further included the
Euclidean Distance Error measure [29], which measures the sum of
Euclidean distances (i.e., straight-line distances) from incorrectly
selected targets to the correct targets. The Euclidean distance is a
common distance metric for continuous space and has been applied
more often to vectors that describe objects in a 3D space [29] than
other distance measurements, such as a Manhattan distance [40].
Because the selection was non-sequential, there are many possible

solutions to this measure, so we took the solution with the minimum
distance as calculated using the Hungarian Algorithm [33].

Participants’ head pose was tracked throughout each trial and
was used to calculate the Walking Distance and Head Rotations in
the learning phase. Subjective ratings and six questions adapted
from the NASA-TLX [23] on a 7-point Likert scale for each of the
four conditions were collected via online forms. The 7-point Likert
scale adaptation from a 10-point scale has been used commonly in
recent studies [35, 38, 40, 53] and is considered a more efficient
yet still valid form of the original NASA-TLX [22]. In total, we
collected data from 320 completed trials (16 participants × 2 FUR-
NITURE conditions × 2 LAYOUT conditions × 5 repetitions). We
treated the FURNITURE, LAYOUT as independent variables, as well
as four combinations of these two variables. Dependent variables
include accuracy, Euclidean distance error, recall time, walking dis-
tance, head rotations, NASA-TLX score, and subjective rating.

3.6 Results
Following APA recommendations [1], we report our analysis us-
ing estimation techniques with confidence intervals and effect sizes
(i.e., not using p-values) following recent precedents in HCI [4, 67].
Our confidence intervals were computed using BCa bootstrapping,
and the term effect size here refers to the measured difference of
means. Error bars in our Figure 3 reporting means are computed
using all data for a given condition. When comparing means, we
average the data by groups and compare the conditions globally by
computing the CI of the set of differences. A difference is consid-
ered significant when the CI of the difference does not cross 0. In
our Figure 3, we display the computed CI of the differences. While
we make use of estimation techniques, a p-value-approach reading
of our results can be done by comparing our CIs spacing with com-
mon p-value spacing as shown by Krzywinski and Altman [32].
For the completeness of our analysis, we provide full inferential
statistics in our supplementary materials.

Targets Incorrect—As shown in Figure 3-Target Incorrect
(top), there is evidence that participants have fewer incorrect targets
with the Furniture (0.43, CI [0.33, 0.53]) than with the NoFur-
niture (0.51, CI [0.41, 0.58]). This is also confirmed by our inferen-
tial statistics via an ART-ANOVA test (F(1,47) = 4.71, p = 0.035,
effect size partial η2 = 0.09). However, we can not find any dif-
ference between the two LAYOUT conditions, comparing Regular
(0.44, CI [0.35, 0.53]) with Irregular (0.50, CI [0.40, 0.58]).

By analysing each condition combination, we find that partic-
ipants have fewer incorrect targets with the Furniture-Regular
(0.40, CI [0.28, 0.53]) than with the NoFurniture-Irregular (0.53,
CI [0.39, 0.62]), as shown in Figure 3-Target Incorrect (bottom).

Euclidean Distance Error—We can not find any difference
between the two FURNITURE conditions, comparing Furniture
(2.00, CI [1.52, 2.51]) with the NoFurniture (2.36, CI [1.94,
2.73]). Also, we can not find any difference between the two LAY-
OUT conditions, comparing Regular (2.25, CI [1.77, 2.69]) with
the Irregular (2.11, CI [1.67, 2.62]).

By analysing each condition combination, we can not find any
difference between each pair of the condition combination.

Recall Time—We can not find any difference between the two
FURNITURE conditions, comparing Furniture (2.00, CI [1.52,
2.51]) with the NoFurniture (2.36, CI [1.94, 2.73]). However,
there is evidence that participants use less time to recall with the
Regular (26.74, CI [25.28, 28.64]) than with the Irregular (29.59,
CI [27.27, 32.61]), as shown in Figure 3-Recall Time (middle).

By analysing each condition combination, there is evidence
that participants use less time to recall card patterns with the

NoFurniture-Regular (25.82, CI [23.68, 28.91]) than with the
NoFurniture-Irregular (29.96, CI [26.44, 34.68]) and the

Furniture-Irregular (29.23, CI [26.24, 33.22]), as shown in Fig-
ure 3-Recall Time (bottom).

5

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/
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Figure 3: In each cell of each row (first row: each FURNITURE condition; second row: each LAYOUT condition; last row: each condition
combination), the top chart shows means and CIs (error bar) for all measures for each grouped condition, while the bottom chart shows 95% CIs
for the mean differences between grouped conditions. Arrows indicate significant differences between conditions.

Walking Distance—As shown in Figure 3-Walking Dist. (top),
there is evidence that participants have more walking distance with
the Furniture (10.05, CI [9.36, 11.22]) than with the NoFurni-
ture (9.47, CI [8.96, 10.03]). However, we can not find any differ-
ence between the two LAYOUT conditions, comparing Regular
(9.94, CI [9.14, 10.80]) with Irregular (9.56, CI [9.00, 10.28]).

By analysing each condition combination, there is evidence that
participants have the least walking distance with the NoFurniture-
Irregular (9.20, CI [8.68, 9.83]) than with the Furniture-Regular
(10.12, CI [9.23, 11.55]), the Furniture-Irregular (9.92, CI [9.21,
10.93]), and the NoFurniture-Regular (9.20, CI [8.68, 9.83]), as
shown in Figure 3-Walking Distance (bottom).

Head Rotation—We can not find any difference between the
two FURNITURE conditions, comparing Furniture (1953.08, CI
[1660.53, 2219.87]) with the NoFurniture (1771.85, CI [1580.45,
1985.48]). Also, we can not find any difference between the two
LAYOUT conditions, comparing Regular (1980.73, CI [1745.05,
2298.02]) with the Irregular (1759.52, CI [1512.3, 2072.34]).

By analysing each condition combination, there is evidence that
participants have the least head rotations with the NoFurniture-
Irregular (1551.81, CI [1335.85, 1900.35]) than with the
Furniture-Regular (1931.53, CI [1609.09, 2389.00]), the
Furniture-Irregular (1971.07, CI [1638.52, 2363.43]), and the
NoFurniture-Regular (2010.21, CI [1795.38, 2257.22]), as shown
in Figure 3-Head Rotation (bottom).

Subjective Rating—As shown in Figure 3-Rating (top), there is
evidence that participants rate a higher score for the Furniture
(3.78, CI [3.38, 4.06]) than for the NoFurniture (2.28, CI [1.81,
2.78]). This is also confirmed by our inferential statistics via an
ART-ANOVA test (F(1,45) = 20.22, p = 4.81× 10−5, effect size
partial η2 = 0.31). However, we can not find any difference be-
tween the two LAYOUT conditions, comparing Regular (3.28, CI
[2.75, 3.66]) with Irregular (2.78, CI [2.23, 3.28]).

By analysing each condition combination, there is evidence that
participants rate a higher score for the Furniture-Regular (3.94,
CI [3.38, 4.25]) than for the NoFurniture-Regular (2.63, CI [1.94,
3.31]) and the NoFurniture-Irregular (1.94, CI [1.44, 2.63]).

Also, participants rate a higher score for the Furniture-Irregular
(3.63, CI [2.88, 4.06]) and the NoFurniture-Regular (2.63, CI
[1.94, 3.31]) than for the NoFurniture-Irregular (1.94, CI [1.44,
2.63]), as shown in Figure 3-Rating (bottom).

In the post-experiment questionnaire, we ask participants “Did
the furniture help you to learn and recall the patterns?”. Thir-
teen out of 16 participants answered “Yes, the furniture did help”,
while the other three participants answered “No, the furniture did
not help”. For the participants who rate furniture as helpful, we ask
further questions: “In which phase did you use furniture to mem-
orise the patterns?”. Ten out of 13 participants answered “Both
learning phase and recall phase”, while the other three participants
answered “Learning phase”. We also asked “How often did you use
furniture to learn and recall patterns?”. Participants answered an
average of 4.54 on a Likert scale from 1 to 5.

NASA-TLX Result—Figure 4 (top row) shows our CI analysis
on FURNITURE factor. From the charts, we can see clear evidence
that participants experience less Mental Demand (4.13, CI [3.48,
4.66] vs 5.19, CI [4.59, 5.71]), Physical Demand (3.94, CI [3.34,
4.5] vs 4.56, CI [3.97, 5.09]), Effort (4.34, CI [3.72, 4.91] vs 4.97,
CI [4.24, 5.47]), and Frustration (3.19, CI [2.66, 3.76] vs 3.84, CI
[3.13, 4.41]) but better Performance (4.19, CI [3.64, 4.75] vs 5.13,
CI [4.59, 5.53]), with an average lower workload (4.12, CI [3.58,
4.53] vs 4.83, CI [4.36, 5.19]) with the Furniture than with the
NoFurniture. This is also confirmed by our inferential statistics via
ART-ANOVA tests.

Then, Figure 4 (middle row) shows our CI analysis on LAYOUT
factor. From the charts, we find evidence that participants experi-
ence less Physical Demand (4.03, CI [3.44, 4.60] vs 4.47, CI [3.81,
4.94]) and Effort (4.47, CI [3.75, 4.97] vs 4.84, CI [4.16, 5.38])
with the Regular than with the Irregular.

Last, Figure 4 (bottom row) shows our CI analysis among
all condition combinations. From the charts, we can see that
the Furniture-Regular achieves better TLX scores than the
NoFurniture-Regular with less Mental Demand (4.00, CI [3.09,
4.81] vs 5.13, CI [4.19, 5.81]) and better Performance (4.06, CI
[3.31, 4.81] vs 5.13, CI [4.44, 5.63]), and an average lower work-
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Figure 4: In each cell of each row (first row: each FURNITURE condition; second row: each LAYOUT condition; last row: each condition
combination), the top chart shows means and CIs (error bar) for all NASA-TLX criteria for each grouped condition, while the bottom chart shows
95% CIs for the mean differences between grouped conditions. In the NASA-TLX, performance was rated in reverse order (lower is better).
Arrows indicate significant differences between conditions.

load (4.02, CI [3.38, 4.54] vs 4.67, CI [4.05, 5.18]). Also, we
find the Furniture-Regular achieves better TLX scores than the

NoFurniture-Irregular with less Mental Demand (4.00, CI [3.09,
4.81] vs 5.25, CI [4.13, 5.94]), Physical Demand (3.81, CI [2.88,
4.50] vs 4.88, CI [3.81, 5.44]), Effort (4.25, CI [3.31, 5.06] vs 5.25,
CI [4.10, 5.88]), and Frustration (3.06, CI [2.44, 3.63] vs 4, CI
[3.00, 4.94]), but better Performance (4.06, CI [3.31, 4.81] vs 5.13,
CI [4.37, 5.65]), with an average lower workload (4.02, CI [3.38,
4.54] vs 4.99, CI [4.11, 5.47]). In addition, we see the Furniture-
Irregular achieves better TLX scores than the NoFurniture-
Regular with less Mental Demand (4.25, CI [3.31, 5.00] vs 5.13,
CI [4.19, 5.81]) but better Performance (4.31, CI [3.50, 5.00] vs
5.13, CI [4.44, 5.63]). Moreover, we find the Furniture-Irregular
achieves better TLX scores than the NoFurniture-Irregular with
less Mental Demand (4.25, CI [3.31, 5.00] vs 5.25, CI [4.13, 5.94]),
Physical Demand (4.06, CI [3.19, 4.84] vs 4.88, CI [3.81, 5.44]),
and Effort (4.44, CI [3.50, 5.13] vs 5.25, CI [4.10, 5.88]), but better
Performance (4.31, CI [3.50, 5.00] vs 5.13, CI [4.37, 5.65]), with
an average lower workload (4.22, CI [3.52, 4.84] vs 4.99, CI [4.11,
5.47]). Last, we find the NoFurniture-Regular achieves better
TLX scores than the NoFurniture-Irregular with less Physical
Demand (4.25, CI [3.25, 5.00] vs 4.88, CI [3.81, 5.44]) and Effort
(4.69, CI [3.69, 5.38] vs 5.25, CI [4.10, 5.88]).

4 DISCUSSION

In this section, we discuss the results of our user study in the context
of immersive view management. We structure our discussion based
on our study conditions, design implications, and limitations.

4.1 Furniture Benefit Spatial Memory

Overall, we confirm our hypothesis H1 from the quantitative analy-
sis of both the accuracy results, subjective rating, and NASA-TLX
scores. This finding supports the application of the well-known
mnemonic technique, Method of Loci, in a situated Augmented
Reality environment and aligns with the findings in VR [69] and
physical environments [48].

Our accuracy results suggest that Furniture as landmarks lead
to better user performance than no landmark in an empty room.
Participants made fewer errors in the room with furniture than in

the empty study room, as measured by Targets Incorrect. Although
we can see the trend in the other accuracy measure, the analysis of
the mean difference does not show clear evidence.

It is interesting to see that participants in the learning phase per-
form more walking distance in a room with furniture than in an
empty room, as measured by Walking Distance. This finding aligns
with the locomotion effect on spatial memory [29] that locomotion
may positively benefit spatial memory. It is also possible that par-
ticipants intentionally move to specific locations relevant to each
piece of furniture to explicitly learn card patterns associated with
the furniture (e.g., standing in front of the whiteboard helps partic-
ipants recall the positions of the cards near the whiteboard).

From the results of subjective ratings and NASA-TLX scores, we
can see overwhelming positive feedback that furniture helps partic-
ipants memorise virtual patterns. Specifically, participants reported
less mental and physical effort, less frustration, and better perfor-
mance while working on the abstract task for spatial memory in a
room with furniture than in an empty room.

Comments from 13 participants further explain this finding. For
example, “I tried to remember the location in relation to furniture,
e.g., corner of TV or top of chair” (P1), “I used furniture to remem-
ber the pattern and use the top, middle, bottom to distinguish the
row” (P3), and “To memorise which furniture is related to the pat-
terns” (P8). Participants also mentioned interesting strategies, such
as using storytelling to associate the patterns with the physical ob-
jects, as mentioned by P2: “I have to take the pencil and write on
the whiteboard then put the pencil on the table and sit on the chair”.

Three participants who rated furniture as not useful reported
different strategies for the task. Two of them used a directional
mnemonic for each side of the panels (e.g., top-left, etc.), while one
participant used a numerical mnemonic for each side of the pan-
els (e.g., 1–9). The former strategy can be explained using Sholl’s
model, where participants remember patterns based mainly on ego-
centric relations. Participants using these strategies show better
accuracy (mean = 0.78, SD = 0.24) than those who reported us-
ing furniture as landmarks (mean = 0.47, SD = 0.18) in our study.
However, due to a limited sample size, we cannot conclude that
the perception of egocentric relations benefits spatial memory more
than working with allocentric relations.
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4.2 The Influence of Display Layout and Furniture
We did not find conclusive evidence for the effects of situated lay-
outs (i.e., views closely aligned with landmarks) from all the mea-
sures, and therefore hypothesis H2 is not supported. It is interesting
to see that participants spend less time recalling the pattern in the

Regular condition than in the Irregular condition. This implies
that a regular grid layout of virtual views may help users quickly
locate the target view. Moreover, the NASA-TLX scores show that
a regular grid layout affords less physical effort than an irregular
layout. This can be explained by the fact that each row of the vir-
tual targets is located at the same vertical height, requiring simpler
physical movement from participants.

Regarding our hypothesis H3, although we found evidence
that Furniture-Irregular affords less Mental Demand than
NoFurniture-Regular and NoFurniture-Irregular, there is no
clear evidence that Furniture-Irregular outperforms among all
conditions in Recall Time and Mental Effort, which rejects our H3.

Our results also reveal some interesting findings. First, al-
though NoFurniture-Irregular supports the least accuracy, espe-
cially a strong difference between NoFurniture-Irregular and
Furniture-Regular, NoFurniture-Irregular affords the least walk-
ing distance and head rotation, supported by the strong evidence
from our CI analysis. This may be explained by the fact that partic-
ipants are reluctant to move and rotate to memorise the target posi-
tions in an empty room with all targets randomly placed, and thus
affecting their accuracy. Second, participants in the NoFurniture-
Regular condition spend less time recalling the positions of card
patterns than in the Furniture-Irregular and the NoFurniture-
Irregular. This may again imply that a regular grid layout in an
empty room may help users quickly locate the target views.

Moreover, subjective ratings and NASA-TLX results show
that participants prefer the Furniture-Regular condition and
Furniture-Irregular more than the NoFurniture-Irregular con-
dition and report higher mental and physical effort for the
NoFurniture-Irregular condition. This may be due to the strategies
that most participants used in the NoFurniture conditions, such
as “remembering the patterns from a 3 × 3 matrix on each wall”
(P9). This strategy does not work well in an Irregular layout
where such a matrix can not be perceived easily. Interestingly, this
subjective perception does not influence participants’ performance
much, which means that participants are able to perform well in an
empty room with randomly placed views but perceive high physical
and mental demands to compensate for the accuracy.

4.3 Design Implications
Based on our results and discussion above, we propose several de-
sign implications for guiding future designs of mixed-reality user
interfaces and view management.

(1) An interesting design implication from our results is that
working in a completely decluttered mixed-reality environment
may not be necessary and not even particularly beneficial. In fact,
physical furniture is useful in providing landmarks to enhance
mind-map creation for the workspace (similar to the method of
Loci) and could increase the efficiency of information retrieval for
sensemaking tasks (e.g., [43]) and browsing tasks (e.g., [15]).

(2) With the new generation of video pass-through AR headsets
(Meta Quest 3, Apple Vision Pro), developers can choose to com-
pletely block out the environment, for example, to hide furniture to
focus on the visualisation panels. However, our findings suggest
that hiding furniture could compromise spatial memory.

(3) When working in an empty room, i.e. a space without such
physical landmarks, adding virtual spatial referents (e.g., virtual
grids or shelves [39]) to virtual views may enhance navigation
among virtual views.

(4) Another way to increase productivity in an empty room is to
display virtual views in several 3 × 3 grid layouts. As our partic-

ipants (P3, P9, P12, and P15) explained, such layouts would afford
directional aid (e.g., top, middle, bottom, etc.) or numerical aid
(e.g., number 1-9) to help them recall the position of information
views using a mnemonic device rather than relative spatial position.

(5) Future mixed-reality user interfaces should consider loco-
motion or direct interaction as design opportunities. P14 men-
tioned in the post-study questionnaire that “when my movement is
significant, or returning to the centre each time I touch the square,
it will help increase my spatial memory”. P6 also proposed a sim-
ilar strategy to dramatically use the body gestures and movements
so that the unconscious mental replay will enhance spatial memory.
These findings align with the literature about the effects of kines-
thetic cues on spatial memory (e.g., [14, 29, 70]).

4.4 Limitations and Future Work

Our study does not evaluate different workspace scales, which have
implications on locomotion [29], landmark density, and informa-
tion view density, any of which may influence spatial memory.
Also, in our study, there is no semantic relationship between views
and landmarks. This was to avoid potential confounds and cover as
many scenarios as possible. However, the context would likely have
semantic relationships with the display in realistic situated analyt-
ics scenarios. Last, the limited Field-of-View (FoV) of HoloLens 2
may hinder participant’s ability to connect information views with
physical landmarks. Participants reported that virtual content was
only displayed on half of the vertical height of their FoV.

There are, of course, several more factors that should be taken
into account in future studies. For example, P14 suggests that the
furniture as landmarks is more useful when the virtual panel is to
the top of furniture, such as to the top of tables and desks, than
when it is to the left or right of the furniture. Thus, further studies
could elaborate on the effects of relative positions between the in-
formation views and physical landmarks on spatial memory, such
as comparing placing visual panels closer to physical landmarks
with placing panels in empty spaces or even fully randomised po-
sitions. Moreover, the cardinality of this study is designed as one
to three or six, where each physical landmark is mapped to three or
six information views. Future studies could help to test the different
cardinality configurations, such as a one-to-one mapping.

5 CONCLUSION

In this study, we examine how physical objects in the environment
affect people’s spatial memory via an abstract task in Augmented
Reality, comparing two different room settings with two different
situated layouts of virtual information panels. The results show
that participants perform better in a room with physical furniture as
landmarks than in an empty room. Moreover, from the subjective
results, participants report less mental and physical effort, less frus-
tration, and better performance while working on the abstract task
for spatial memory in a room with furniture than in an empty room.
This general result held regardless of the subordinate factor (i.e., sit-
uated layout) that we introduced, implying that the main factor that
influences the performance is the existence of physical landmarks.
In other words, physical landmarks benefit people’s spatial ability
to recall the positions of virtual information views in an Augmented
Reality environment.

Our study design is the first to test spatial memory for immersive
information displays in a room-sized AR environment and has im-
portant implications for the design of situated analytics and small-
multiple display visualisation applications in AR, which we expect
will become much more commonplace with improved AR technol-
ogy. We hope this paper will establish a connection between spatial
memory and situated analytic tasks in information visualisations,
and inform future designs of mixed-reality user interfaces.
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